

VIDEOFLUOROSCOPIC SWALLOW STUDIES: LOOKING BEYOND ASPIRATION

Brenda Sitzmann, MA, CCC-SLP <u>bksitzmann@cmh.edu</u> (816) 302-8037

DISCLOSURES

- Ms. Sitzmann is speech-language pathologist at Children's Mercy for which she receives a salary.
- Ms. Sitzmann is receiving an honorarium for presenting this workshop.
- ► Ms. Sitzmann has no non-financial relationships to disclose.

VIDEOFLUOROSCOPIC SWALLOW STUDIES

- ► VFS or VFSS for short
- Previously known as an OPM (Oral Pharyngeal Motility
 Study) at Children's Mercy (CMH)
- Modified Barium Swallow
 Study
- It is "video x-ray" of the patient's swallow

REFERRALS

- Clinical signs of aspiration
 - ► coughing
 - ➤ choking
 - frequent respiratory infections
 - Pneumonia, Bronchiolitis vs. RSV
 - ► wet breath or vocal sounds with feedings
- ► Poor weight gain
- Limited interest in oral feedings

A WORD OF CAUTION RE: CLINICAL SIGNS OF ASPIRATION

- Clinical signs and symptoms of oropharyngeal aspiration and dysphagia in children (Weir et al. 2009)
- ► 150 children
 - median age = 16 months; range 2 weeks 247 weeks (nearly 3 years)

- ► 106 (71%) had a neurological impairment
- ► Findings
 - Cough, wet voice and wet breathing were most significantly associated with aspiration on thin liquids
 - ► These markers were **NOT** associated with aspiration on purees
 - No markers were associated with isolated laryngeal penetration or postswallow residue on purees
 - ► Post swallow residue on thin liquids was associated with coughing

A WORD OF CAUTION RE: CLINICAL SIGNS OF ASPIRATION

Clinical signs and symptoms of oropharyngeal aspiration and dysphagia in children (Weir et al. 2009)

- Findings (continued)
 - ► Infants were more likely to have wet voice on thin liquids
 - Older children who aspirated were more likely to demonstrate wet breathing with thin liquids and purees
 - Isolated laryngeal penetration or post-swallow residue = no clinical markers regardless of consistency or age group
 - Neurological impairment = strong correlation between wet voice and breathing and aspiration on thin liquids
 - ► Non-neurological group = wet voice was associated with aspiration

REFERRALS

- A VFSS is not the best assessment for:
- ► Limited oral intake
 - Ideally patient is accepting at least 1 oz. orally
- Chewing concerns
 - Multidimensional process but VFSS typically only offers a lateral view
 - ► Best assessed clinically
- ► Barium allergy
 - ► Rare

PREPARATION FOR THE STUDY

- ► Requires a physician order
- Patient preparation:
 - Nothing to eat or drink for 2-3 hours prior to the study
 - goal = hungry and willing to accept barium
 - > patient should be hungry but not "hangry"
 - ► No metal on clothing from the waist up
 - No siblings in the radiology suite
 - Bring familiar bottles, cups, utensils, preferred food
 - ► Items for a typical feeding after the study
 - ► Ideally caregiver will be present for the study

SET UP FOR THE PROCEDURE

- ► Goal is to replicate a typical feeding as much as possible
 - ► Positioning
 - ► Upright
 - ► Reclined
 - ► Side-lying
 - ► Bottle/cup
 - ► Utensils
 - Feeder techniques
- Most patients benefit from a clinical feeding evaluation prior to a VFS

SET UP FOR THE PROCEDURE

PROCEDURE

Typically start with thin liquids

- prefer to use patient's current bottle or cup
- may evaluate swallow after a fatigue period (i.e. the patient continues to drink the barium but there is no fluoroscopy for a period of time (typically 30-60 seconds)
- Implement compensatory strategies before increasing viscosity of the liquid
- ➤ Typically progress from thin to nectar to honey to honey plus
 - this pattern varies depending on observations

COMPENSATORY STRATEGIES

- Ideally, we want to try all other options before thickening liquids.
- ► Positioning
 - Elevated side-lying
 - ► More upright
 - Slightly reclined
- ► Flow rate
 - Slower flowing nipple
 - ► Sippy cup vs. open cup
 - ► Straw
 - ► Use with caution

COMPENSATORY STRATEGIES

- ► Techniques
 - ► Pacing
 - Chin tuck
 - Multiple swallows
 - Chin/jaw support
- ► Consistency of liquids
 - ► Thin
 - ► Nectar
 - ► Honey
 - ► Spoon Thick
 - typically requires supplemental non-oral feedings due to dehydration concerns

COMPENSATORY STRATEGIES

- Information from the feeding therapist is very helpful
 - ► Helpful strategies
 - ► Positioning
 - ► Pacing
 - ► Bolus presentation
 - Challenging liquids/foods
 - Current treatment plan
- Clinical feeding plan prior to the VFSS

BARIUM

► Basic Element

- ► On the periodic table
- "White when it goes in and white when it comes out"
- Can be mildly constipating but typically intake during a VFSS is limited
- Slightly chalking
- ► Can flavor it
 - ► Kool-Aid packets
 - ► Avoid products that would alter the consistency

BARIUM

► We use Varibar Barium at CMH

- ► Thin
- ► Nectar
- ► Thin Honey
 - this corresponds to the standard "honey" recipe for most thickening agents
- ► Honey
- ► Pudding

LIQUID CONSISTENCIES

- At Children's Mercy, we use the following consistencies clinically:
 - ► Thin
 - ► Water, milk, breastmilk
 - ► Nectar
 - ► 3 teaspoons of Thick & Easy per 4 oz. of liquid
 - Syrup (this is typically called honey consistency)
 - ► 4 1/2 teaspoons of Thick & Easy per 4 oz. of liquid
 - Honey (this is typically called spoon thick)
 - ► 5 1/2 teaspoons of Thick & Easy per 4 oz. of liquid

LIQUID CONSISTENCIES

- Currently working on standardizing recipes and identifying the best thickening agents
 - Would like our recipes to match the viscosity of the Varibar Barium products we use during swallow studies
 - ► Visualization is a very inaccurate way to assess viscosity
 - Improve education and compliance with thickening recommendations

OPTIMAL SAMPLING RATE

- Solution ASHA recommends a national standard of 30 frames per second
 - ► We currently use 15 fps at Children's Mercy
 - ► SLPs are working with radiology to change this practice
- ► Bonilha, et. al. 2013
 - scores from MBSImp and Penetration-Aspiration Scale varied between pulse rates
- ► Cohen 2009
 - The full depth of laryngeal penetration was visible on only 1 frame for 70% of the studies

THREE PHASES OF SWALLOWING

- ► Oral phase
- ► Pharyngeal phase
- ► Esophageal phase

At CMH, a swallow study
 is used to evaluate the first
 2 phases

ORAL PHASE

- > During a swallow study, we are evaluating the following areas:
- ► Lip seal
 - ► Bottling
 - Cup drinking
 - Spoon feeding
 - Oral containment of the bolus
- ► Tongue movement
 - ► Tongue base retraction
 - ► Tongue pumping, fasciculations

ORAL PHASE

► Bolus control

- ► Is the bolus split, pocketed
- ► Chewing
 - A swallow study is not typically the best evaluation of chewing concerns (recommend a clinical feeding evaluation)
- Lingual-palatal seal
 - Prevents the bolus from entering the pharynx too soon
- Piecemeal deglutition
 - ► Bolus is divided into smaller parts before swallowing

ORAL PHASE

- ► Residue after the swallow
- ► Bolus size
 - ► Too big
 - ► Too small
 - Inefficient extraction
- ► Pacing
 - Difficulty coordinating suck-swallow-breathe pattern
 - Consecutive swallows
 - Controlled pattern

- ➤ Trigger of the swallow response
 - ► Lots of opinions on this topic
- Pooling/filling in the valleculae and pyriforms
 - ► Associated with poor oral containment and a delayed swallow
 - Acceptable pooling varies by age
- Epiglottic inversion
 - Simplified version of airway protection:
 - Epiglottis inverts ("caps the larynx")
 - Aryepiglottic folds tighten (purse-like strings)
 - Vocal folds adduct (close)

- ► Hyo-laryngeal elevation
 - The larynx moves up and forward during the swallow to initiate airway protection
 - Decreased elevation may contribute to reduced epiglottic inversion, laryngeal penetration, aspiration, cricopharyngeal dysfunction, and residue after the swallow
 - Cricopharyngeal dysfunction may cause reduced hyo-laryngeal elevation
- ► Nasopharyngeal reflux
 - ► Part of the bolus enters the nasal cavity
 - Somewhat acceptable in neonates
 - Common in infants with unrepaired cleft palate

- Pharyngeal peristalsis
 - Pharyngeal weakness will result in residue
 - Increases risk for aspiration
 - Uncoordinated
 - ► May divide the bolus
 - May contribute to nasopharyngeal reflux
- Laryngeal penetration
- ► Aspiration
- ► Residue after the swallow
 - Location of residue can provide cues about swallowing difficulties

- Cricopharyngeal/upper esophageal sphincter function
 - Does the bolus easily pass into the esophagus?
 - May be caused by reduced hyo-laryngeal elevation but may also be limiting hyo-laryngeal elevation (tethering effect)
- Signs of a tracheoesophageal fistula
 - ► Barium in the airway without aspiration

LARYNGEAL PENETRATION

- ► Food or liquid enters the laryngeal vestibule but does not go below the vocal folds
- ► Severity:
 - ► Amount of barium
 - ► Trace, slight, moderate, entire bolus
 - ► Level of penetration
 - ► Upper 1/3 of the laryngeal vestibule
 - ► Upper 2/3
 - ► Deep = touches or nearly touches the vocal folds
 - ► Not a safe feeding plan
 - Will often stop testing that consistency during a VFS to minimize radiation exposure
- ► Residue in laryngeal vestibule

LARYNGEAL PENETRATION

- ► Gurberg, J., et al. 2015.
 - ► 165 pediatric patients with a wide range of diagnoses
 - ► 58 had neither laryngeal penetration or aspiration
 - ► 59 had laryngeal penetration
 - ► 48 had tracheobronchial aspiration
 - "Children with laryngeal penetration on videofluoroscopic swallowing study had significantly more pneumonia than patients with neither penetration nor aspiration."
 - ► 2 pneumonias compared to 0
 - Increased risk for pneumonia and aspiration for patients with glottic abnormalities (ex. laryngeal cleft)
 - Associated syndromes did not appear to impact risk for pneumonia or aspiration

LARYNGEAL PENETRATION

- ► Friedman, B., et al. 2000
- ► 60% of the 125 children in the study demonstrated laryngeal penetration
 - ► 31% = deep laryngeal penetration
- ► 85% of these children eventually aspirated during the study
- Why are these studies important?
 - Laryngeal penetration is not benign
 - Minimize radiation exposure
 - deep laryngeal penetration is not a safe plan so we can move to the next strategy or consistency faster vs. waiting to witness aspiration

ASPIRATION

- Food or liquid passes through the vocal folds and into the sub-glottic space
- ► Types
 - ► Silent (no cough)
 - very common in the pediatric population
 - Can be very hard to detect silent aspiration clinically – VFSS is the gold standard
 - ► Aspiration with a cough
 - Aspiration with a delayed cough

ASPIRATION

- ► Timing of the aspiration event
 - ► Before the swallow
 - suggests a delayed or absent swallow
 - ► During
 - suggests incomplete
 vocal fold closure,
 reduced hyo-laryngeal
 elevation, laryngeal cleft
 - ► After
 - ► often due to residue

ASPIRATION

- Amount of barium aspirated
 - ► Trace, minimal...
- Was the patient able to clear the barium from the airway?
 - ► Effective cough
 - Cue to cough or spontaneous
- ► Other signs of aspiration
 - ► Watery eyes
 - Stopped the feeding
 - ► Wet breath or vocal sounds

PENETRATION-ASPIRATION SCALE

- Rosenbeck, J.C., et al. 1996.
- \blacktriangleright 1 = Material does not enter the airway
- 2 = Material enters the airway, remains above the vocal folds, and is not ejected from the airway

- 3 = Material enters the airway, remains above the vocal folds, and is not ejected from the airway
- 4 = Material enters the airway, contacts the vocal folds, and is ejected from the airway
- 5 = Material enters with airway, passes below the vocal folds, and is not ejected from the airway
- 6 = Material enters the airway, passes below the vocal folds, and is ejected into the larynx or out of the airway
- 7 = Material enters the airway, passes below the vocal folds, and is not ejected from the trachea despite effort
- 8 = Material enters the airway, passes below the vocal folds, and no effort is made to eject

MBSIMPTM

Martin-Harris, B. et al. 2008

- Modified Barium Swallow Impairment Profile (MBSImP)
- A standardized approach to instruction, assessment, and reporting of physiologic swallowing impairment
- Evidence based
- ► Assesses 17 components of swallowing
- SLPs become a "Registered MBSImP Clinician" upon successful completion of the MBSImP Online Training and Reliability Testing
- Pediatric protocol is being developed

DOCUMENTATION

- ► Findings
 - ► Safe swallow for ...
 - Aspiration/penetration
 - ► note consistencies
 - Possible reason for dysphagia concerns
- ► Diagnosis
 - Oral dysphagia
 - Pharyngeal dysphagia
 - Oral-pharyngeal dysphagia
- Support for diagnosis

DOCUMENTATION

- ► Recommendations
 - ► Feeding plan
 - liquid consistency recommended
 - ► recipe
 - recommended thickening agent
 - ► solids
 - will require physician approval for thickening
 - ► Therapy
 - ideally will include recommendations for therapy goals/ activities

DOCUMENTATION

► Recommendations (continued)

- ► Referrals
 - ► ENT
 - ► GI
- Repeat swallow study
 - recommend limiting studies as much as possible
 - ► Approximately every 6-12 months
 - ► Change in swallow
 - Change in medical status
 - Clinical feeding evaluation prior to a repeat study

FEES VS. VFSS

- ► Flexible Endoscopic Evaluation of Swallowing (FEES)
- A flexible endoscope is used to evaluate the pharyngeal phase of the swallow
- ► At Children's Mercy, ENT typically places the scope
- ► Use green dye for contrast
- Multiple positioning options including:
 - ► Caregiver's lap
 - ► Exam chair
 - ► Wheelchair

Candidates for FEES include:

- Suspect structural issues are impacting swallow safety
- Assessing secretion management
 - ► typically done with children who are not oral eaters
- Only instrumental assessment to further evaluate breastfeeding
- Special positioning needs
- ► Unable to tolerate a VFSS

Pros:

- ► No radiation exposure
 - Study time is limited only by patient's tolerance/ willingness to participate
- ► Able to use the patient's preferred foods
 - ► Breastfeeding
 - ► No need to alter taste or texture with barium
 - ► Green dye is optional
- ► Able to view saliva swallows
- More flexible seating/positioning

FEES

Pros (continued):

- Excellent view of pharyngeal anatomy
 - ► Base of tongue
 - ► Epiglottis
 - ► Vocal folds
 - ► Arytenoid cartilage
- ► Able to view asymmetry
 - ► Unilateral pooling

FEES

Cons:

- "White out" during the swallow
- Challenging to identify aspiration
 - Iooking for signs of the aspirated bolus between or below the vocal folds
- ► Blocks the nasal airway
 - May impact bottle and breastfeeding
 - Nasogastric tubes
- ► May be uncomfortable
- Pharyngeal phase only
 - ► unable to assess tongue movement or other elements of the oral phase

VFSS

Pros:

- Gold standard for identification of laryngeal penetration and aspiration
- Able to track the bolus through the oral and pharyngeal phases as well as esophageal phase
- May be able to see possible signs of a TE fistula and/or laryngeal cleft
 - further work-up may be necessary to fully evaluate these concerns

VFSS

Cons:

- ► Radiation exposure
- Must use barium
- ► Unable to clearly evaluate structures
 - ► vocal folds
- More challenging to identify asymmetries
 - At CMH, we typically only complete a lateral view to minimize radiation exposure
 - ► Anterior posture view

CASE STUDIES & VIDEOS

REFERENCES

- Bonilha, H.S., Blair, J., Carnes, B., Huda, W., Humphries, K., McGrattan, K., Michel, Y., Martin-Harris, B., 2013. Preliminary investigation of the effect of pulse rate on judgments of swallowing impairment and treatment recommendations. Dysphagia. 28(4): 528-538.
- Cohen, M.D. 2009. Can we use pulsed fluoroscopy to decrease the radiation does during video fluoroscopic feeding studies in children? Clinical Radiology. 64(1): 70-73.
- Delaney, A.L., Barkmeier-Kraemer, J. 2017. Instrumental Swallowing Assessment: Considerations for standardized protocols and on-line decision making. Feeding Matters. Phoenix, AZ.
- ► Friedman, B., Frazier, J.B. 2000. Dysphagia. 15:153-158.

REFERENCES

- Gurberg, J., Birnbaum, R., Daniel, S.J. 2015. Laryngeal penetration on videofluoroscopic swallowing study is associated with increased pneumonia in children. International Journal of Pediatric Otorhinolaryngology. 79: 1827-1830.Ro
- Rosenbek, J.C., Robbins, J., Roecker, E.B., Coyle, J.I., Wood, J.L. 1996. A Penetration-Aspiration Scale. Dysphagia. 11: 93-98.
- Martin-Harris, B., Brodsky, M., Michel. Y., Castell, D., Schleicher, M., Sandige, J., Maxwell, R., Blair, J. 2008. MBS measurement tool of swallow impairment - MBSImp: Establishing a standard. Dysphagia. (4): 392-405.
- Weir, K., McMahon, S., Barry, L., Masters, I.B., & Chang, A.B. 2009. Clinical signs and symptoms of oropharyngeal aspiration and dysphagia in children. European Respiratory Journal. 33:604-611.

QUESTIONS?

THANK YOU!

Brenda Sitzmann, MA, CCC-SLP <u>bksitzmann@cmh.edu</u> (816) 960-4005