

FEEDING THE MEDICAL COMPLEX PEDIATRIC PATIENT

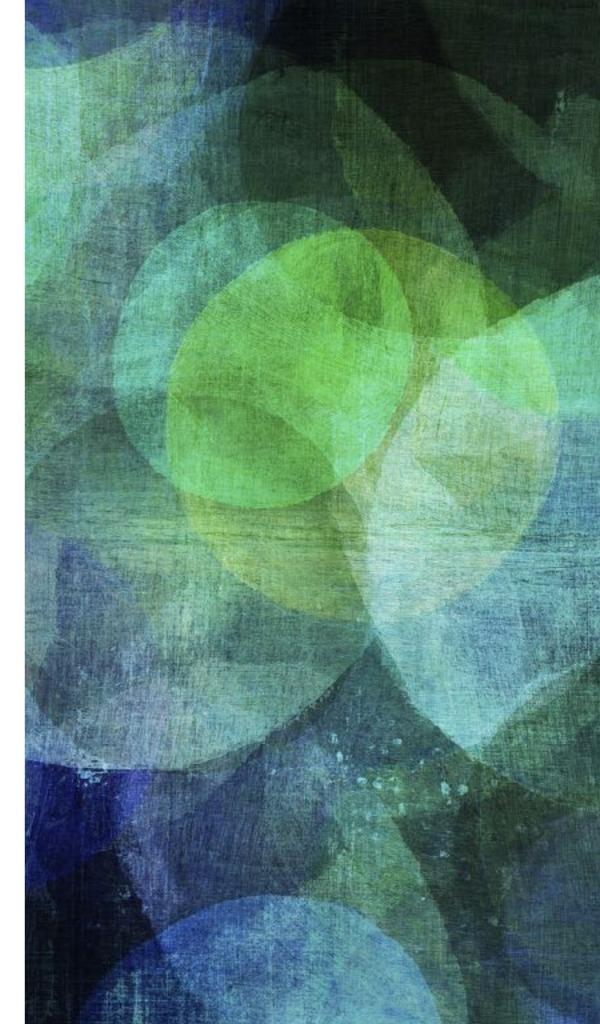
Brenda Sitzmann, MA, CCC-SLP <u>bksitzmann@cmh.edu</u> (816) 302-8037

DISCLOSURES

- Ms. Sitzmann is speech-language pathologist at Children's Mercy for which she receives a salary.
- Ms. Sitzmann is receiving an honorarium for presenting this workshop.
- ► Ms. Sitzmann has no non-financial relationships to disclose.

PEDIATRIC FEEDING DISORDER

Goday, et al. 2017


- An impairment (system failure) creates a pediatric feeding disorder (PFD) that results in a dysfunction
- ➤ The resulting dysfunction is not considered age- appropriate
- ► Impacts at least one of these domains:
 - ► medical
 - ► nutrition
 - ► skill and ability
 - ► psychosocial
- Today's presentation will focus on the impact of the medical domain on skill and ability.

OVERVIEW

- ► Non-oral feedings
- ► Eosinophilic esophagitis
- ► Laryngomalacia
- ► Laryngeal cleft

NON-ORAL FEEDINGS

NON-ORAL FEEDINGS

► Very useful tools

- Enables patients to receive adequate nutrition while the team addresses medical, psychosocial, and skill/ability concerns
- Have a plan to work towards removal before the tube is placed however this may not be the goal for all patients

NON-ORAL FEEDINGS

Studies have shown that g-tubes:

- ► Improve weight gain and mid-arm circumference
- ► Reduce feeding time
- Improve quality of life for caregivers and patients

(Gottrand et al. 2010)

NON-ORAL FEEDINGS

Today we are going to explore the following types of non-oral feedings:

- ► Nasogastric (NG) tube
- ► Nasojejunal (NJ) tube
- ► Gastrostomy (G) tube
- ► Gastro-jejunal (G/J) tube

NASOGASTRIC (NG) TUBE

- A long feeding tube is inserted through the nose and passed into the stomach
- In GI Multidisciplinary Feeding Clinic, we often use NG tubes to trial non-oral feedings
 - ► Will the patient...
 - ► tolerate feedings
 - ► gain weight appropriately

NASOGASTRIC (NG) TUBE

- ► Pros:
 - ► Temporary
 - Non-surgical placement
 - Bolus or continuous feedings into the stomach
- ► Cons:
 - Temporary (easily pulled out, vomiting)
 - ► Needs to be replaced more frequently than a g-tube
 - Concerns that it may interfere with swallow function (unable to find research indicating that this is true)
 - ► May increase oral aversion

NASOJEJUNAL (NJ) TUBE

- Tube is inserted through the nose, passed through the stomach and placed in the jejunum (second part of the intestines)
- Continuous feedings (no bolus feedings) into the jejunum
 - Limited options for formula
- Often used if the patient is not tolerating NG tube feedings
 - Frequent vomiting
 - Significant reflux concerns

NASOJEJUNAL (NJ) TUBE

► Pros:

- ► Temporary
- Non-surgical placement
- ► Can eliminate vomiting associated with NG feedings

► Cons:

- Temporary (easily pulled out; vomiting)
- ► Needs to be replaced more frequently than a g-tube
- Placement confirmed with x-ray
- Concerns that it may interfere with swallow function (unable to find research indicating that this is a valid concern)
- ► May increase oral aversion
- ► Difficult to wean to oral feedings if patient is only tolerating NJ tube feedings

- Tube is inserted through the abdomen and delivers nutrition directly to the stomach
- Typically considered a good option if it is expected that the need for non-oral feedings will be greater than 3 months
- Can be used for bolus and continuous feedings
 - gravity feedings
 - ► feeding pumps
- Initial replacement of the tube occurs ~3 months post surgery and typically requires a visit to the surgeon
- Replaced every 3 months or sooner if concerns arise
 - caregivers may be trained to replace the tube at home

► Pros:

- Semi-permanent (can be removed)
- Decreased risk of oral aversion
 - ► Not taped to the child's face
 - Does not irritate the nose, pharynx, or esophagus
- ► Cons
 - Surgical placement
 - ► Complications with stoma site
 - ► Granulation tissue
 - ► Leaking

GASTRO-JEJUNAL (G/J) TUBE

- Tube is inserted through the abdomen and delivers nutrition directly to the stomach (g-tube) and also contains another tube that is passed into the jejunum (j-tube)
- Often start with a g-tube then progress to a g/j tube if the patient is having difficulty tolerating g-tube feedings
- Provide continuous feedings into the jejunum
- Replaced using x-ray guidance

GASTRO-JEJUNAL (G/J) TUBE

► Pros:

- Semi-permanent (can be removed)
- Decreased risk of oral aversion
 - Not taped to the child's face
 - ► Does not irritate the nose, pharynx, or esophagus
- ► J-tube is helpful when the patient is unable to tolerate g-tube feedings
- ► Cons:
 - Surgical placement
 - Cannot be replaced at home
 - Continuous feedings make weaning difficult
 - Complications with stoma site
 - ► Granulation tissue
 - ► Leaking

- Criteria typically includes:
 - ► Within 90% of ideal body weight with steady weight gain
 - Strong oral motor feeding skills
 - Medically stable
 - Ideally this includes being able to tolerate bolus feedings into the stomach
 - Continuous feedings are often a sign of ongoing GI concerns and interfere with hunger signals
 - Supportive caregivers
 - Strong child-caregiver interactions

- Multiple approaches
 - The typical approach used by the GI Multidisciplinary Feeding Clinic at CMH is outlined in the following slides
- Highly individualized process
- Must be completed under the guidance of the patient's medical team
 - ► It takes a village
 - ► Feeding teams are very helpful

STEP 1:

- Address medical concerns
 - ► Reflux
 - ► Aspiration
 - ► EoE
 - ► Constipation
 - Slow gastric emptying
- Establish successful non-oral feedings
- ► Ensure adequate weight gain
- Continue oral stim program and oral feedings as tolerated
 - expect a decrease in oral feeding initially

STEP 2:

- Work towards bolus feedings into the stomach
 - Pump or gravity feeds
 - Ideally, age-appropriate volume given over 30 minutes or less
- Build oral motor feeding skills and normalize oral sensation if aversion is a concern

STEP 3:

At this point, the patient is interested in eating and taking a variety of foods orally but oral intake is limited

- Safe plan for liquids and intake is steadily increasing
- ► Offer oral feedings 2-3 times per day prior to non-oral feedings
 - ► goal = 30 minutes or less of time in the highchair/oral feeding
 - Provide 15 minutes to eat orally then start the non-oral feeding while the child continues to eat (if interested)
 - work on adding variety
 - Protein, vegetables, fruits
 - ► Hydration

STEP 3 (continued):

- ► Rearrange non-oral feedings to encourage hunger "Hunger provocation"
 - ► Work with a dietician and physician
 - More time between feedings
 - Provide individual feedings over a shorter period of time
 - Decrease pump feedings from 45 minutes to 30 minutes
 - Transition from pump feedings to a gravity feeding
 - Condense feedings
 - If child is receiving five 4 oz. formula boluses during the day (every three hours, example 6 am, 9 am, 12 pm, 3 pm & 6 pm), transition to four 5 oz boluses given every 4 hours (6 am, 10 am, 2 pm, 6 pm)
 - ► Ideally non-oral feeding schedule will match a typical meal schedule

STEP 4:

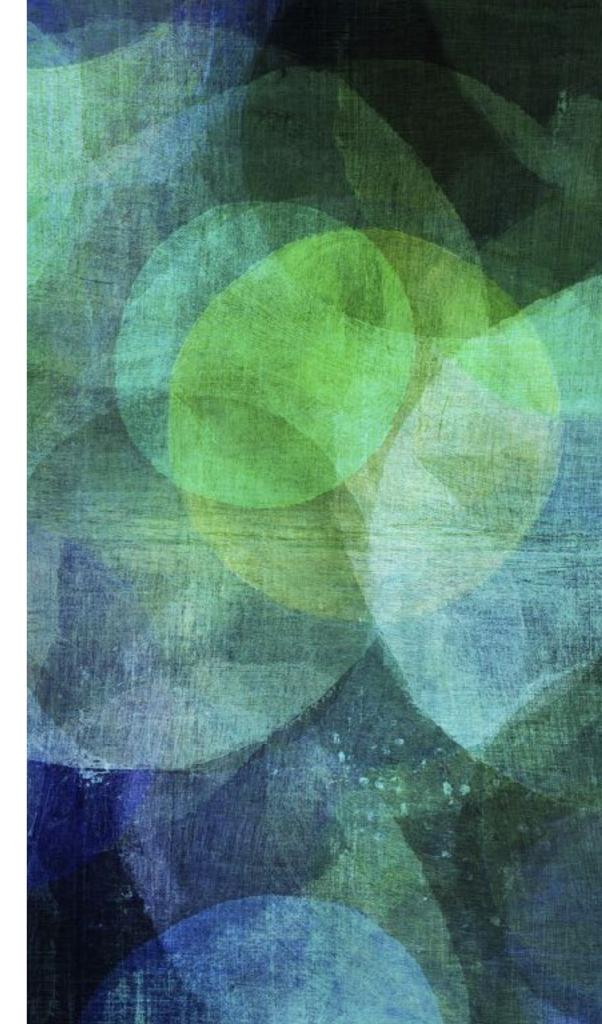
- As intake increases, may start "counting calories" and adjusting non-oral feedings based on oral intake
 - If the child typically receives a 4 oz PediaSure bolus but drinks 2 oz orally, only 2 oz. are provided non-orally after the oral feeding
 - More complicated when calculating intake of solids

STEP 4 (continued):

- Another option is to reduce all feedings by a set amount (determined by dietician based on current oral intake) then provide a "catch-up feeding" at the end of the day
 - Volume of "catch-up feeding" depends on oral intake
 - If the child typically receives five 6 oz. boluses, each bolus is reduced to 4 oz. If the child drinks 10 oz. of formula during that day there is no need for a supplemental feeding however if only 4 oz. are consumed orally, an additional 6 oz. feeding is provided

STEP 5:

- Start eliminating non-oral bolus feedings and/or significantly reduce calories provided via non-oral feedings until the child is meeting nutritional needs via oral feedings only
 - ► typically start with the meal with the best oral intake
 - ➤ may provide a supplemental non-oral feeding at the end of the day
- May take a little while (few days) for the child to adjust oral intake to compensate for fewer non-oral feedings
 - It do not expect weight gain during this transition
- Ensure patient is drinking enough fluids (not just formula/milk)
- ► Plan for administering medication


General guidelines:

- ► Remember the big picture
 - ► Weaning may not be appropriate for all patients
 - Quality of life
 - > Develop an appropriate long-term plan with the family
 - ongoing discussion
- Typically try to avoid nighttime/overnight feedings
 - ► Want to mirror an age-appropriate schedule
 - Overnight feedings tend to interfere with oral intake in the morning

General guidelines (continued):

- If the child does not seem to be recognizing hunger, medical team may consider medication
 - Cyproheptadine/Periactin
 - ► Ensure oral motor skills are appropriate before using medication
- Demonstrate adequate growth and weight gain for 6 months before the g-tube is removed
 - "make it through a respiratory season without using the tube"
- Monitor weight gain closely
 - but not too closely (no daily weight checks)
- Puree by g-tube/blenderized diets
- Intensive feeding therapy programs

EOSINOPHILIC ESOPHAGITIS

"A chronic disease of the esophagus that is often confused with gastroesophageal reflux disease but is unresponsive to treatment with proton pump inhibitors." (Chadha et al. 2014)

- Increasing reports of EoE most likely due to increased awareness
- Estimated US & European incidence = 1.3 to
 12.8/100,000 children and adults (Dellon 2014)

Common symptoms:

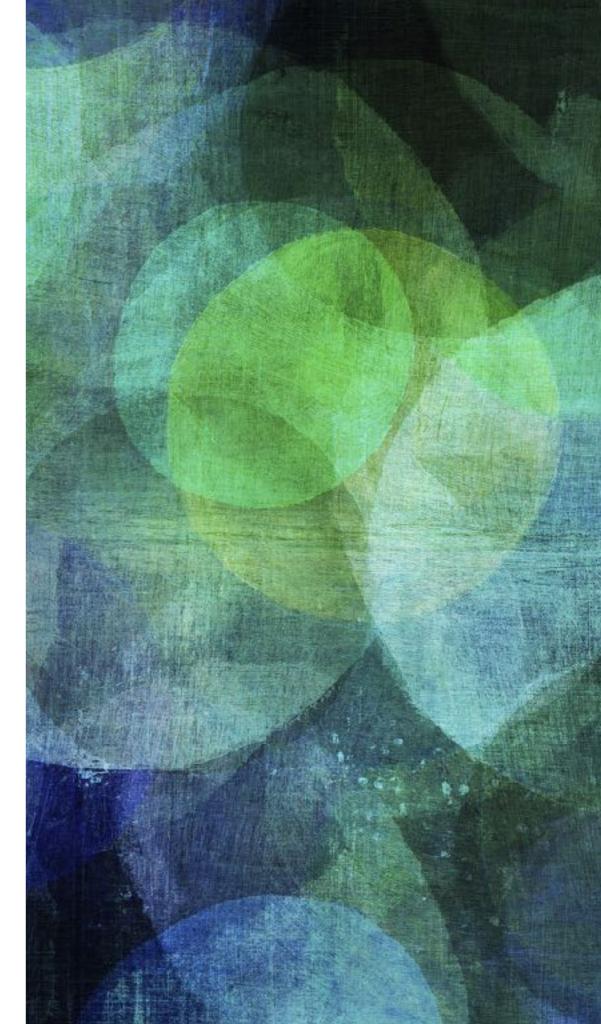
- ► Young children
 - ► Vomiting
 - ► Poor appetite
 - ► Poor growth
- Older children
 - ► Abdominal pain

Long-term complications:

- ► Fibrosis
- Stricture formation
- ► Food impaction

(Chawla et al, 2016)

- Diagnosed via an EDG (esophagogastricduodenoscopy)
 - Endoscopy that examines the esophagus, stomach, and first portion of the duodenum (small intestine)
 - completed under anesthesia
 - Obtain biopsies that are examined for the presence of eosinophils
 - Must see a minimum density of a predetermined number of eosinophils per biopsy to diagnosis EoE


- Common course of treatment at CMH:
 - ► High-dose PPI
 - ► Re-scope in 8 weeks
 - ► If EoE is still present, options include:
 - ► Dietary therapy
 - ► Topical steroids
 - ► Therapy plan
 - ► Skill building
 - ► Address oral aversion
 - When the EoE is well managed, begin feeding therapy to add foods and increase volume of oral intake

Dietary therapy:

- Empiric six-food elimination diet
 - Dairy, egg, wheat, soy, peanut/tree nuts, seafood
- ► Targeted elimination diet
 - Foods are eliminated based on allergy testing (skin-prick)
- ► Elemental diet
 - amino acid based with fats, sugars, vitamins and minerals
 - ► EO28 Splash, Neocate, Elecare, Nutramigen AA
- Very challenging to implement dietary changes when intake is restricted and/or variety is very limited

Topical Steroids:

- Swallowed budesonide
- Swallowed fluticasone
- Stopping the topical steroid will result in elevated eosinophils because the foods that are causing the issue have not been eliminated
- Commonly used in our GI MDFC population
 - As oral intake improves, may transition to an elimination diet

"A congenital anomaly of the larynx leading to inward collapse of the supraglottic airway with inspiration."

- Diagnosed via flexible endoscopy
- Characteristics include:
 - Inspiratory prolapse of the arytenoids
 - Redundant arytenoid mucosa
 - Shortened aryepiglottic folds
 - Omega-shaped or tubular epiglottis

(Bedwell et al. 2016; Simons et al. 2015)

- Most common congenital laryngeal anomaly
- Most frequent cause of stridor in infants
 - starts in the first few weeks of life
 - ► Peaks at ~6 months of age
 - ► Most symptoms resolve by 18-24 months
- Commonly associated with:
 - ► GERD
 - ► Feeding difficulties
 - Dysphagia including aspiration
 - Obstructive sleep apnea

(Bedwell et al. 2016; Simons et al. 2015)

- Possible causes
 - ► Anatomic
 - tissue redundancy that leads to supraglottic obstruction
 - Immature or weak laryngeal cartilage contributes to obstruction
 - ► Inflammatory
 - ► GERD (associated but unclear if it is a cause)
 - Neurological
 - ► Hypotonia
 - Impaired neuromuscular control

(Bedwell et al. 2016; Simons et al. 2015)

Dysphagia & Feeding Difficulties

- Incidence of dysphagia and aspiration in patients with laryngomalacia is unknown (Simons et al. 2015)
- Impacts coordination of the suck-swallow-breathe pattern

Laryngomalacia and Swallowing Function in Children (Simons et al. 2015)

- ► 324 patients
 - ► Mild laryngomalacia = 62.7%
 - ► Moderate = 28.7%
 - ► Severe = 8.6%
- Severity was not impacted by gender, age of onset or medical comorbidities
 - Severe laryngomalacia tended to lead to earlier diagnosis and greater prevalence of symptoms such as apnea, cyanosis, failure to thrive and retractions

Simons et al. 2015 (continued)

- Medical comorbidities included:
 - ► GERD (226, 69.8%)
 - patients with moderate to severe laryngomalacia were more likely to have GERD compared to mild cases
 - ► Down syndrome (3.1%)
 - ► Neurological impairment (6.5%)
 - ► Congenital heart disease (0.9%)

Simons et al. 2015 (continued)

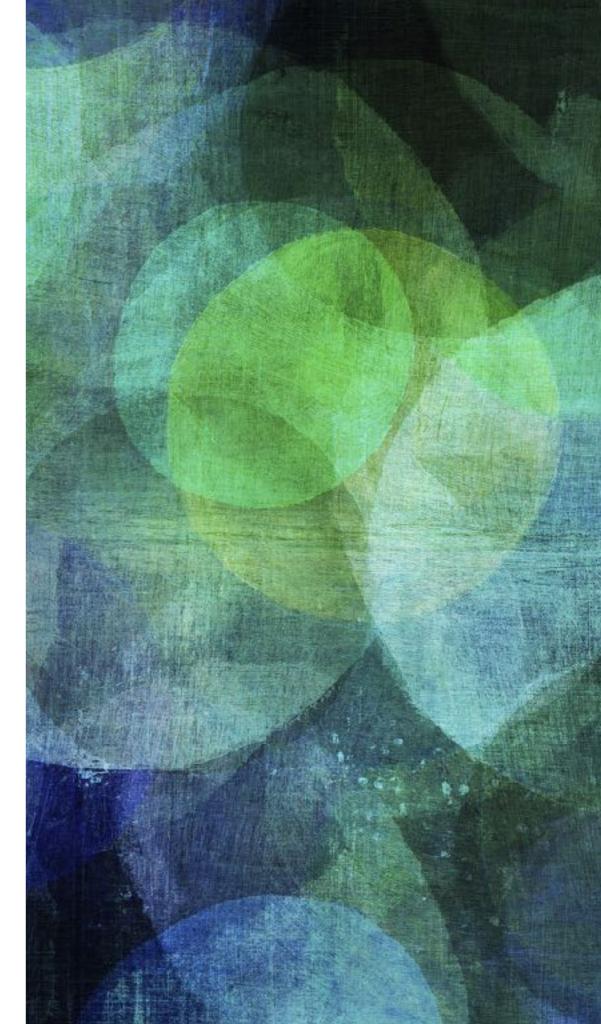
Results:

- ► Dysphagia or feeding difficulties =163 of 324 patients (50.3%)
 - Severity of laryngomalacia did not have a significant effect on swallowing dysfunction
- ► Failure to thrive/poor weight gain = 31 patients (9.6%)
- Comorbidities were not associated with increased severity of laryngomalacia
- "Swallow studies are frequently abnormal in laryngomalacia patients presenting both with and without subjective symptoms of dysphagia or feeding difficulty."

How to help:

- Researchers from the Simons et al. 2015 study planned to implement the following clinical care pathway in ADT Clinic:
 - Caregiver report (guided questioning) re: swallowing symptoms
 - Clinical swallowing evaluation with speech pathology
 - ► At least one baseline instrumental swallowing assessment
 - "The sensitivity of clinical evaluation to detect laryngeal penetration and tracheal aspiration was low, as the majority of aspiration events were silent" (Gasparin et al. 2017)
 - ► 10 Patients with laryngomalacia and 19 with glossoptosis

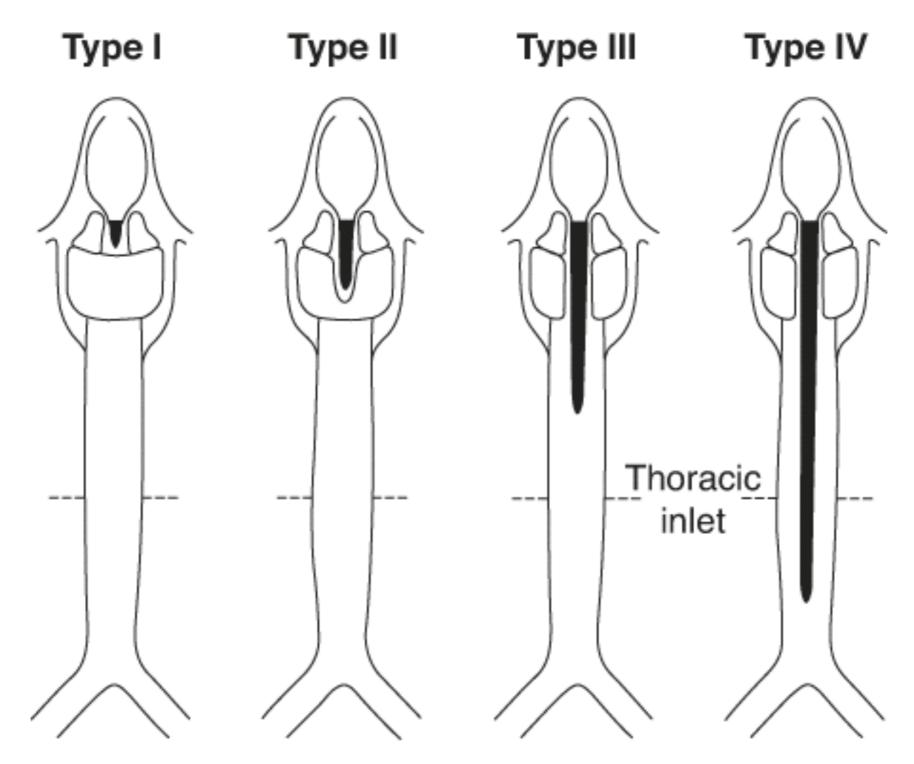
How to help (continued):


- External respiratory pacing to improve suck-swallow-breathe coordination
 - After the baby takes 2-3 sucks, tip the bottle down to remove the milk from the nipple (do not remove the nipple from the baby's mouth).
 After the baby swallows and takes a breath, tip the bottle up to fill the nipple with milk.
 - Repeat this cycle as needed throughout the feeding. If the baby swallows and takes a breathe after 2-3 sucks, you do not need to tip the bottle down.
 - As the baby's feeding skills improve, the need for pacing should decrease
 - Typically "teach" this skill with bottle feedings then improved pacing transfers to breastfeeding

How to help (continued):

- ► Positioning
 - Elevated side-lying

- Adjusting flow rate for bottle feedings
 - "Just right" balance


- ➤ Thickened liquids may be helpful based on VFSS or FEES
 - Do not recommend thickening without an instrumental swallow study

"A rare congenital anomaly in which there is incomplete separation of the aerodigestive tract due to a midline defect in the common wall between the laryngotracheal and esophageal lumens."

(Osborn et al. 2014)

- ► Grade I to IV
 - ► I = gap located above the vocal folds
 - ► is this a variant of normal?
 - ► II = below the vocal folds
 - ► III = extends below the larynx into the trachea
 - \blacktriangleright IV = may go all the way to the bottom of the trachea

Source: Lalwani AK: CURRENT Diagnosis & Treatment in Otolaryngology – Head & Neck Surgery, 3rd Edition: www.accesssurgery.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- Causes dysphagia because the patient may not be able to adequately close the airway and boluses enter the trachea through the cleft
- Commonly associated with other airway anomalies or syndromes with craniofacial, aerodigestive or neurological effects (Osborn et al. 2014)
 - ► Also see the need for long-term non-oral feedings in some patients
- Diagnosed via microlarygoscopy and bronchoscopy
 - ► Unable to identify on a VFSS or FEES
 - ► May be able to see signs that would warrant a referral to ENT
 - ► Where is the barium entering the sub glottal space?

► Treatment options

- ► Small clefts (type I and II)
 - ► May not cause symptoms
 - ► If symptomatic, manage with medical and feeding modifications
- ► Some small clefts and all type III and IV
 - ► surgical intervention
 - ► goal = prevent aspiration and pulmonary compromise
- ► At Children's Mercy, typical options include
 - ► Gel foam injection
 - Supraglottoplasty

(Osborn et al. 2014)

Swallowing Function After Laryngeal Cleft Repair: More than Just Fixing the Cleft (Osborn et al. 2014)

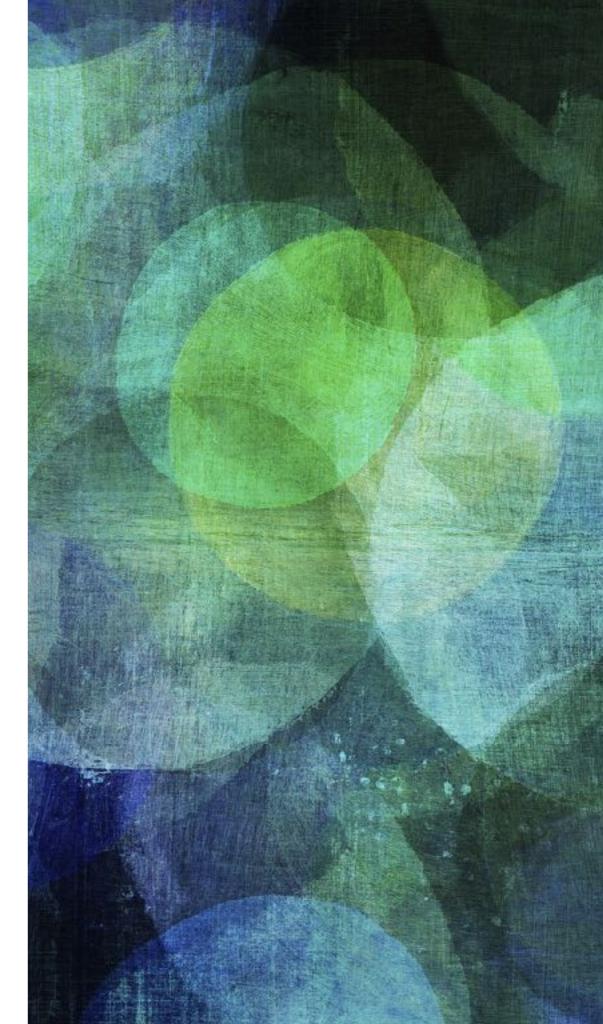
- ► 60 patients
 - ► Grade I = 21
 - ► Grade II = 21
 - ► Grade III = 17
 - ► Grade IV = 1
- ► After repair (and possible revision)
 - ► 34 children has a normal swallow
 - ► 12 =some degree of penetration
 - > 14 =some degree of aspiration

Swallowing Function After Laryngeal Cleft Repair: More than Just Fixing the Cleft (Osborn et al. 2014; continued)

- Feeding recommendations
 - > 43 were able to take all consistencies by mouth with nominimal modifications
 - ► 11 = modified consistencies
 - \blacktriangleright 6 = unsafe for oral intake

Swallowing Function After Laryngeal Cleft Repair: More than Just Fixing the Cleft (Osborn et al. 2014; continued)

- ► No association between cleft type and final feeding recommendations
- Neurological comorbidities (CHARGE, Opitz, cerebral palsy, trisomy 21, global developmental delays) and g-tube use were associated with feeding modifications
 - ► 6 times greater risk for neurological concerns
 - ► 3.6 times greater need for diet modification
- 32 patients were cleared for oral intake of all consistencies within 1 year
 - ► 11 took more than 1 year


Swallowing Function After Laryngeal Cleft Repair: More than Just Fixing the Cleft (Osborn et al. 2014; continued)

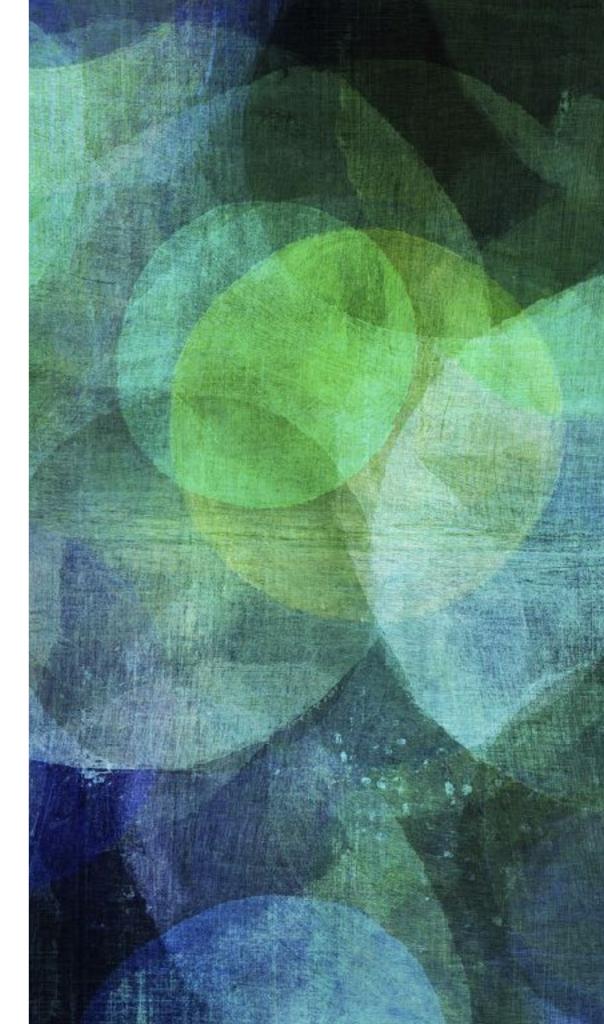
- ► Results:
- > 28% of children remained NPO or required the use of thickeners to achieve adequate airway protection after surgery
 - Neurodevelopmental delay = most likely to fall in this category
- ► Recommendations:
 - ► swallow evaluations at 3, 6, 12 and 24 months post repair
 - chance of recovering normal swallow function greater than 2 years post-repair is small

How to help:

- Clinical feeding evaluation and an instrumental swallow study prior to repair
- Follow-up swallow assessments following repair
 - ► Revisions
 - ► May still be at risk for aspiration even with a successful repair
- ► Type of instrumental assessment and timing is important
 - Hersh et al. 2016 found that each child participated in 3.24 VFSS which was the equivalent of 30.6 chest x-rays
- Modifications may be helpful:
 - ► Thickened liquids
 - ► Positioning
 - ► Pacing
- ► Referral to ENT

REFERENCES

REFERENCES


- Bedwell, J., & Zalzal, G. 2016. Laryngomalacia. Seminars in Pediatric Surgery. http:// dx.doi.org/10-1053/j.sempedsurg.2016.02.004.
- Chadha, S.N., Wang, L., Correa, H., Moulton, D., & Hummell, D.S. 2014. Pediatric eosinophilic esophagitis: the Vanderbilt experience. Annuals of Allergy, Asthma and Immunology. 113: 445-451.
- Chawla, N., Deshmukh, M., Sharma, A., Parole, S. 2016. Strategies for Medical Management of Pediatric Eosinophilic Esophagitis. Journal of Pediatric Gastroenterology and Nutrition. 63(6):152-157
- Dellon, E.S. 2014. Epidemiology of eosinophilic esophagitis. Gastroenterology Clinics of North America. 43: 201-218.
- Garuti, G., Reverberi, C., Briganti, A., Massobrio, M., Lombardi, F., & Lusuardi, M. 2014. Swallowing disorders in tracheostomised patients: a multidisciplinary/ multiprofessionsal approach in decannulation protocols. Multidisciplinary Respiratory Medicine Journal. 9:36.
- Goday, P.S., Lukens, C.T., Dodrill, P. & Feuling, M.B. 2017. Pediatric Feeding Disorders: Proposed Consensus Definition and Consensus Framework. Phoenix: Feeding Matters.

REFERENCES

Gottrand, F. & Sullivan, P.B. 2010. Gastrostomy tube feeding: when to start, what to feed and how to stop. European Journal of Clinical Nutrition. 64:S17-S21.

- Hersh, C., Wentland, C., Sally, S., de Stadler, M., Hardy, S., Fracchia, M.S., Liu, B., & Hartnick, C. 2016. Radiation exposure from videofluoroscopic swallow studies in children with a type 1 laryngeal cleft and pharyngeal dysphagia: A retrospective review. International Journal of Pediatric Otorhinolaryngology. 89:92-96.
- Norman, V., Louw, B., & Kritzinger, A. 2006. Incidence and description of dysphagia in infants and toddlers with tracheostomies: A retrospective review. International Journal of Pediatric Otorhinolaryngology. 71: 1087-1092
- Ongkasuwan, J., Turk, C.L., Rappazzo, C.A., Lavergne, K.A., O'Brian Smith, E, & Friedman, E.M. 2014. The effect of a speaking valve on laryngeal aspiration and penetration in children with tracheostomies. The Laryngoscope. 124:1469-1474.
- Osborn, A.J., de Alarcon, A., Tabangin, M.E., Miller, C.K., Cotton, R.T., & Rutter, M.J. 2014. Swallowing function after laryngeal cleft repair: More than just fixing the cleft. The Laryngoscope. 124:1965-1969.
- Simons, J.P., Greenberg, L.L., Deepak, K.M., Fabio, A., Maguire, R.C. & Mandell, D.L. 2016. Laryngomalacia and swallowing function in children. The Laryngoscope. 126:478-484.

QUESTIONS?

THANK YOU!

Brenda Sitzmann, MA, CCC-SLP <u>bksitzmann@cmh.edu</u> (816) 302-8037