VPD Clinic: Using Nasopharyngoscopy to Evaluate Velopharyngeal Dysfunction… and so much more!

Brenda Sitzmann, MA, CCC-SLP
Speech Language Pathologist

Jill Arganbright, MD
Assistant Professor, Pediatric Otolaryngology
PART 1:

▪ What is VPD?
▪ VPD Clinic
 ▪ Team members
 ▪ Our patients
▪ Typical Visit
VPD: Velopharyngeal Dysfunction

PART 1 (continued)

- Typical Visit
 - History & Physical
 - Speech & Resonance Evaluation
 - Nasoendoscopy
 - Preparation & video samples
 - Interpreting the scope
VPD: Velopharyngeal Dysfunction

PART 2

• Treatment Recommendations
 ▪ Determining the type of VPD
 ▪ Surgical Intervention
 ▪ Speech therapy
I can’t wait to learn more about VPD!

PART #1
VELOPHARYNGEAL DYSFUNCTION
Types of Velopharyngeal Dysfunction

• VPD is a term used to describe a group of disorder involving the velopharyngeal valving mechanism.

• Who gets it?
 • Cleft palate (10-20% after repair have residual VPI)
 • Submucus cleft palate
 • 22q11.2 deletion syndrome
 • S/p adenoidectomy
 • 1:1,500-1:10,000
 • Motor speech disorder/neuromuscular disorder/cranial neuropathy
 • Tonsil hypertrophy- prevents palate from moving superiorly
 • Idiopathic
VPD from tonsillar hypertrophy?
Types of Velopharyngeal Dysfunction

• 3 types:
 • Velopharyngeal Incompetence
 • Velopharyngeal Insufficiency (VPI)
 • Velopharyngeal Mislearning
Velopharyngeal Incompetence

- Incomplete closure of the velopharyngeal valve due to a neurological problem
- Often associated with asymmetrical palatal elevation when there is cranial nerve damage
- Common causes:
 - Posterior fossa tumors – damaged cranial nerve X (Vagus) during surgery, may or may not be permanent
 - NF 1 – also associated with surgical damage to the cranial nerve.
 - Apraxia of speech
- Require surgical intervention (may not be a candidate to due medical history) or a palatal lift
Velopharyngeal Insufficiency

- Occurs due to an anatomical or structural defect such as a short soft palate
- Common causes:
 - cleft palate
 - submucous cleft palate
 - Adenoids/adenoid atrophy
- Mild cases may improve with speech therapy but typically these children require surgical intervention (or palatal lift) to improve closure for speech
- Speech therapy may be recommended to improve oral airflow and correct compensatory errors
Velopharyngeal Mislearning

- The child has not learned how to use the velopharyngeal mechanism appropriately for select non-nasal sounds
- Velopharyngeal mechanism is intact
- The child is able to produce most sounds with adequate intraoral pressure
- Results in phoneme specific audible nasal emission of air (most common with s and z) or hypernasality on vowels (fairly rare)
- Requires speech therapy
Why do we care about VPD?

- **Impacts quality of life!!**
 - Made fun of at school, bullying
 - Embarrassed to read out loud/give presentations
 - Struggle at school
 - Self-conscious
 - Withdraw from social settings

- **Research on-going for quality of life impact on pts with VPI**
 - VELO questionnaire: VPI Effects on Life Outcomes
VPD CLINIC
VPD clinic

- Team Members
 - Jill Arganbright, MD
 - Brenda Sitzmann, MA, CCC-SLP
 - Clinic nurse
 - Child life
VPD clinic

- Our patients
 - Resonance or hypernasality concerns
 - Super Q Express Clinic
 - 22q11.2 deletion syndrome clinic at CMH
 - Internal referrals from speech, ENT, genetics, plastics
 - Referrals from outside providers
 - Ideally the patient is able to produce at least single word utterances with high pressure consonant sounds (ex. Puppy, daddy, go)
 - Some exceptions including extremely hypernasal patients who are unable to produce high pressure consonant sounds (lots of nasal substitutions)
Who we DON’T see?

- Patients with cleft lip and palate
 - Followed by the Cleft Lip and Palate Clinic at Children’s Mercy
Typical Clinic Visit

- 60 minutes
- Introduction and description of what will take place
 - History and physical (if not previously established)
 - Speech and resonance evaluation
 - If deemed necessary, scope evaluation
 - Discussion of results and recommendations
History and physical

- History
 - What are the speech concerns?
 - How long been going on?
 - Speech therapy
 - Goals
 - Progress
History and physical

- History (continued)
 - Surgical history
 - Adenoidectomy
 - Previous palate surgery
 - Snoring/obstructive sleep apnea
 - Nasal regurgitation
 - During eating (not vomiting)
 - Speech intelligibility
 - Familiar and unfamiliar listeners
Speech & Resonance Evaluation

• Oral Mechanism Exam
• Resonance Assessment
• Articulation Assessment
• Patient/Parent Education
• Recommendations
 • Would the patient benefit from endoscopy?
Oral Mechanism Exam

• Soft palate
 • elevation during phonation
 • symmetrical or asymmetrical
 • No/minimal elevation
 • “Tenting”
 • Palatal length
 • Difficult to assess from an oral view
 • Nasal endoscopy is the gold standard
 • Sphincter pharyngoplasty or pharyngeal flap observed?
Oral Mechanism Exam

- Feeding/swallowing difficulties
 - Patient/parent report of nasal loss of liquids or solids
 - Vomiting through the nose is not as concerning
 - Path of least resistance
 - REMINDER: Velopharyngeal port closure for speech is a completely separate neurocognitive pathway than for swallowing
 - May completely close with swallow and not with voluntary speech.
Resonance Assessment

• Evaluating for:
 • Hypernasality
 • Hyponasality
 • Cul-de-sac resonance
 • Mixed resonance

• Try to determine the cause of the resonance disorder
 • Velopharyngeal insufficiency
 • Velopharyngeal incompetence
 • Velopharyngeal mislearning
 • Nasal obstruction
Assessment Techniques

• Speech samples:
 – Sustained phonation
 – Resonance assessment phrases
 – See next slide
 – Reading passages
 – Grandfather passage
 – Zoo passage
 – Conversational speech sample

• No tech/low tech:
 – Nasal occlusion
 – Mirror under the nose
 – Straw as a “phone”

• Technology based:
 – Endoscopy
Resonance Assessment Phrases

- Pat the puppy
- Buy baby a bib
- Take Teddy to Town
- Did daddy do it?
- Kick the cake
- Go get the girl
- Forty four fish
- I love every view
- Sun in the sky
- Zebra at the zoo/Zippers are easy to close

- She wears blue shoes
- Father takes a bath
- That thumb hurts
- Jack wore a soldier’s badge/Jack & Jill jumped over the bridge
- Stop the skate from sliding
- Where were you? Why were you away?
- Mama made muffins/Mama made lemonade
- Nine men came/no no no
- I like lollipops
- The red bird has a beard
Nasal Occlusion

• Listening for changes in occluded and non-occluded productions
• I find this technique particularly useful with sustained phonation and for determining if distortions are due to placement or nasal air loss
• Pros:
 – Inexpensive and readily available
 – May provide an insight to what the child would sound like with a successful speech surgery
• Cons:
 – Creates a cul-de-sac resonance quality
Mirror Technique

• Place a small mirror under the nose – it will fog up if nasal air loss is present
 − No fogging with non-nasal sounds
 − Fogging with nasal consonant sounds

• Pros:
 − Very visual/easy for children to identify
 − Inexpensive, readily available
 − Easy to provide parent training/home carryover

• Cons:
 − Have to be quick – most people exhale through their nose at the end of an utterance
Straw Technique

• This is my “go to” technique for evaluating resonance and teaching children and caregivers about resonance disorders
 − I learned this inexpensive, readily available technique from Ann Kummer, Ph.D., CCC-SLP
• Place one end of a “bendy” straw at the child’s nares. The other end is placed near the SLP’s ear
• The straw amplifies hypernasality and nasal air loss.
• It also confirms appropriate nasal resonance for nasal consonants
• Nasal endoscopy
 − “Gold standard” because it provides a more complete view of velopharyngeal closure patterns
 − Pros:
 ▪ Distinguishes between resonance concerns related to VPD vs. fistulas
 ▪ Determine if therapy techniques are effective
 ▪ Determine the type of speech surgery
 ▪ direct assessment of closure pattern
 − Cons:
 ▪ Can be challenging with young children
Hypernasality Assessment

• Severity
 – Mild
 – Moderate
 – Severe

• Consistency
 – Inconsistent
 – Consistent

• Associated Characteristics
 – Nasal emission of air
 – Nasal Rustle/Turbulence
 – Nasal grimace
 – Weak or omitted consonants
 – Short utterance length
 – Compensatory and obligatory speech errors
Hypernasality Assessment

• The American Cleft Palate-Craniofacial Association has great speech samples
 – Children
 – Women
 – Men
• http://www.acpa-cpf.org/education/educational_resources/speech_samples/
Cul-de-sac Resonance

• Muffled speech quality that is often due to an obstruction (ex. limited oral opening, enlarged tonsils, nasal obstruction) paired with VPI
 – Sound resonates/gets stuck in a nearly closed off chamber in the pharynx or nasal cavity
 – Does resonance improve with increased oral opening?
• Can be challenging to discriminate between hyponasality and cul-de-sac resonance
Articulation Assessment

• With standardized testing, I focus on articulatory placement – not hypernasality, nasal rustle, etc. – when calculating raw scores.

• Types of errors:
 – Compensatory errors
 ▪ Speech errors that are directly related to VPD. These errors are often attempts to adjust for nasal air loss.
 – Obligatory errors
 ▪ A type of compensatory speech error that is directly related to structural issues such as a severe underbite.
 – Phoneme specific audible nasal emission of air
 – Motor speech & developmental errors
Articulation Assessment

Stimulability Testing

• Significant part of a speech and resonance evaluation
• Trial techniques to guide decision making
 • Is the child able to produce p with improved oral airflow?
 • Can the nasal snort be eliminated?
• If the child is success, may recommend therapy prior to endoscopy and/or surgery
• Discuss findings with parents
 • Provide education re: the velopharyngeal mechanism
 • Provide easy to understand information
 • Straw technique is very helpful
 • If velopharyngeal insufficiency or incompetency is suspected and impacting speech intelligibility, a scope is recommended
NASOENDOSCOPY
Preparation for Scope

- CHILD LIFE

- Numbing up the nose
 - Topical spray: afrin, 1% lidocaine
 - Topical 4% lidocaine jelly on q-tip placed into the nose for 1-2 minutes. Repeat.
 - Goal is to gently advance the q-tip posteriorly to rest between the middle turbinate and the septum (path of the scope)
Tips and Tricks

CHILD LIFE

- Describe the procedure in kid-friendly language
 - ‘Make a movie of the inside of your nose’
 - ‘Medications to make your nose go to sleep’

- Distraction while numbing, having a prize to earn

- Let the child see the scope, touch it, let the scope touch the face, look in the ears and mouth with the scope
Tips and Tricks

- Positioning- sitting on mom/dad’s lap for comfort
 - Parent places child’s legs between his/her legs and give a bear hug
 - Clinic nurse holds the child’s head
- Get the scope in quickly…may need to hold position for a while to let the child calm down
- If no luck…can try for a few short phrases- ‘take it out’
Scope Evaluation

- Flexible laryngoscope

- Where to position the scope in the nasopharynx
 - Scope placed in the nose
 - Instead of traveling along the floor, want to advance the scope **high** in the nose to be adjacent to or above the middle turbinate
 - Look **down** onto the velopharynx
Traditional flexible scope training is to pass along the floor of the nasal cavity. This does NOT allow a good view of the velopharynx.
By positioning the scope high in the nose, you can now look down on the velopharynx and allows for the examiner to have a much better view of velopharyngeal closure.
Interpreting Scope Exam

▪ What are we looking for?
 ▪ Nasal obstruction
 ▪ Adenoids
 ▪ Palate structure
 ▪ Seagull sign, evidence of submucous cleft palate (SMC)
 ▪ Closure pattern
 ▪ Gap present?
 ▪ Size of gap?
 ▪ Vocal cord motion
 ▪ Midline pulsations
Interpreting Scope Exam

- Nasal Obstruction
 - Hyponasal?
 - Turbinate hypertrophy?

- Adenoids
 - Enlarged? Absent?
 - Contributing to closure?
Interpreting Scope Exam

- Palate structure
 - Evidence of SMC?
Submucous Cleft Palate
Interpreting Scope Exam

- Closure Pattern

- Coronal

- Sagittal

- Circular

- Circular with Passavant
Interpreting Scope Exam

- Closure Pattern
Closure Pattern
Interpreting Scope Exam

- Gap present? Gap size
 - With maximal closure, size of residual gap
Interpreting Scope Exam

- Why is this helpful?
 - Closure pattern + gap size = surgical planning
 - Assist in determining which speech surgery to recommend
 - Assist in intra-op planning/flap design for speech surgery
 - How wide of a flap
 - Height of flap inset
Interpreting Scope Exam

- Vocal fold motion
 - Bilateral vocal fold mobility

- Midline pulsations
 - 22q11.2 deletion syndrome
 - Pulsations do not always accurately predict location of vessels
 - Mitnick et al. 50% of pts with medially displaced carotid arteries on imaging actually had pulsations
Medialized Vasculature
Interpreting Scope Exam

- Turbinate hypertrophy?
- Adenoids?
- Palate- SMC?
- Closure pattern?
- Gap size?
- Medialized vasculature?
I’m learning so much about VPD!
RECOMMENDATIONS
Determining the type of velopharyngeal dysfunction guides treatment recommendations

- Speech therapy
 - Outpatient and/or school based
 - Coordinate care with community SLPs
- Surgery
 - Furlow palatoplasty
 - Pharyngeal Flap
 - Sphincter Pharyngoplasty
 - Posterior wall augmentation (Deflux, Prolaryn, fat)
- Speech appliance/obturator
- Follow-up in VPD Clinic
Determining the Type of VPD

- Is it velopharyngeal incompetence (neurological)?
 - Asymmetrical palatal elevation?
 - History of surgery that may have damaged cranial nerve X (Vagus)?
 - Sudden onset of hypernasality
 - Signs of apraxia of speech?
 - No history of cleft palate or submucous cleft palate
 - Rarely see velopharyngeal incompetence in cleft clinic but we see if frequently in VPD Clinic
Determining the Type of VPD

- **Velopharyngeal incompetence treatment options**
 - Typically requires surgical intervention if VPD is impacting communication success
 - May recommend speech therapy
 - Mild (no surgery recommended)
 - Compensatory strategies
 - Articulation
 - Before Surgery
 - Teach improved placement
 - Eliminate compensatory errors prior to surgery
 - After surgery
 - Teach correct oral airflow
 - Continue work on articulation
Determining the Type of VPD

• Is it **velopharyngeal insufficiency** (VPI)?
 – History of cleft palate or repaired submucous cleft palate?
 – Is palatal length inadequate?
 ▪ Reminder: it is difficult to assess the palatal length from an oral view
 – Does the palate appeared to be tethered/movement is limited?
 – Signs of a submucous cleft palate?
 – Does increased utterance length and/or fatigue increase resonance concerns?
• If yes, most likely VPI related hypernasality
Determining the Type of VPD

- **Velopharyngeal insufficiency (VPI) treatment options**
 - Typically requires surgical intervention
 - It is a structural issues
 - May recommend speech therapy
 - Mild (no surgery recommended)
 - Compensatory strategies
 - Articulation
 - Before Surgery
 - Teach improved placement
 - Eliminate compensatory errors prior to surgery
 - After surgery
 - Teach correct oral airflow
 - Continue work on articulation
Research has shown that these activities do not improve velopharyngeal closure for speech.

- There is a separate velopharyngeal closure motor program for speech vs. non-speech tasks.
- Many of our hypernasal patients are able to achieve adequate closure for swallowing, etc.
- To improve speech, you have to work on speech.
- I may use them to teach the difference between oral and nasal airflow.
Determining the Type of VPD

• Is it velopharyngeal mislearning?
 – Does the child have good oral air pressure for most non-nasal sounds?
 – Is nasal air loss associated with just a few sounds?
 - Usually s, z, f, v and/or th
 – With nasal occlusion does the child appear to be forcing air into the nasal cavity and it gets “stuck”?
 – Can you elicit erred sounds with improved oral airflow (more to come on techniques)?
• If the answer to a majority of these questions is yes, it is most likely velopharyngeal mislearning.
• May see signs of velopharyngeal mislearning following primary palate repair and “speech surgery”
Determining the Type of VPD

• Velopharyngeal mislearning treatment options
 – Speech therapy
 – Typically a very short course of articulation treatment
 – Once improved oral airflow is achieved for 1-2 difficult sounds it is often transferred to other sounds with minimal difficulty
 – Not surgical candidates
 – The velopharyngeal closure mechanism is intact, the child is not using it correctly for all appropriate sounds
Surgery for VPD

- Speech surgery
 - Furlow palatoplasty
 - Pharyngeal Flap
 - Sphincter Pharyngoplasty
Furlow Palatoplasty

- When **submucus cleft palate** is present
- If SMC and a larger gap, consider combining with a sphincter pharyngoplasty
- Genetic testing for 22q11.2 deletion syndrome recommended by ACPA
Furlow Palatoplasty

- Surgical repair of submucous cleft palate
- ‘Double opposing Z-plasty’
- Orients levator palatini muscle in proper direction
- Adds length to the palate

Chim H, et al
Furlow Palatoplasty
Furlow Palatoplasty
Surgery for VPD

- SMC is not present
- VPI present after Furlow
- Large gap
 - Posterior pharyngeal flap
 - Sphincter pharyngoplasty
Surgery for VPD

- Which surgery?
 - Closure pattern (test answer)
 - Circular closure pattern - pharyngeal flap
 - Coronal closure pattern - sphincter pharyngoplasty
 - Surgeon preference
Sphincter Pharyngoplasty

- 2 lateral myomucosal flaps elevated and sewn into the posterior pharyngeal wall
- Creates a ‘speed bump’ along the posterior pharyngeal wall for the soft palate to close against
- Works well for coronal closure patterns
- Consideration for staged T/A (speech may worsen before definitive surgery)
Sphincter Pharyngoplasty

http://emedicine.medscape.com/article/1279928-overview
Posterior Pharyngeal Flap

- Superiorly based myomucosal flap from posterior pharyngeal wall elevated and inserted into the soft palate
- Builds a bridge between posterior pharyngeal wall and the soft palate
Posterior Pharyngeal Flap

- Works well for central gaps, large gaps, neurogenic component
- Historic ‘work horse’ for children with 22q11.2 DS
- Highest risk of post-op OSA
- Consideration for staged T/A
 - speech may worsen before definitive surgery
Posterior Pharyngeal Flap

Pre-op
Posterior Pharyngeal Flap

Post-op
Post-op VPD Surgery

- Pourable diet for 2 weeks post-op
- Resume speech therapy after 4-6 weeks rest
- If persistent snoring with concerns for sleep apnea, obtain sleep study (wait ~3 months)
Speech Therapy Following Surgery

- Important to let family know that post-op therapy is likely, particularly in children with articulation errors in addition to resonance concerns.
- Typically take a break from therapy services for 4-6 weeks following surgery
- Expect changes for up to six months following surgery
 - Healing, scarring
- Focus of therapy
 - Teaching oral vs. nasal airflow
 - Correcting articulation errors
VPD Clinic Follow-Up

- Follow-up in VPD clinic 3-6 months following surgery
 - Re-scope if hypernasality is persistent
- Typically recommend follow-up in 6 months if we are monitoring resonance but not recommending surgery at the time of their initial visit
- Highly individualized process
CASE STUDIES
• Cleftline
 – www.cleftline.org
 – Education materials

• Books
 – Cleft Palate and Craniofacial Anomalies: Effects on Speech and Resonance, 2nd Edition (Kummer, 2008)
QUESTIONS?
THANK YOU!

Brenda Sitzmann, MA, CCC-SLP
bksitzmann@cmh.edu
(816) 960-4005