Clinical Interpretation of Distortion Product Otoacoustic Emissions (DPOAEs)

TIFFANY JOHNSON, PHD CCC-A DEPT. OF HEARING AND SPEECH, UNIVERSITY OF KANSAS MEDICAL CENTER

Otoacoustic Emissions

First described by David Kemp, 1978

- Low level sounds that originate from the cochlea (outer hair cell activity); by-product of normal hearing process
- Propagate through the middle ear and external auditory ear canal
- Measured in the ear canal using a sensitive microphone

Otoacoustic Emissions

- Objective indirect measure of cochlear function, specifically outer hair cell (OHC) function
- Reflect nonlinear and sharply tuned micro-mechanics of the normal hearing process
- Preneural do not require 8th nerve function

OAEs and Identification of Hearing Loss

Normal cochlea behaves nonlinearly

- Source of nonlinearity is the OHC system
- Healthy, functioning OHCs required for normal hearing
- OAEs are byproducts of normal nonlinear function
 - Loss of OAEs indicates damage to the OHCs

The Clinical Link

5

OAEs and Hearing Loss

- OAEs generally present at normal levels in ears with normal hearing, absent or present at reduced levels in ears with hearing loss
 - Many ears with mild hearing loss have OAEs, it is hard to distinguish normal from mild hearing loss.
 - Having present OAEs (for typical clinical protocols) generally suggests normal hearing or no more than a mild hearing loss
 - For typical clinical protocols the vast majority of ears with moderate to profound hearing loss have absent OAEs

6

Types of OAEs

Transient Evoked OAEs (TEOAEs)

Distortion Product OAEs (DPOAEs)

Stimulus Frequency OAEs (SFOAEs)

DPOAE Stimulus and Response

8

Typical clinical stimulus conditions

Stimulus levels:

- L1 = 65 dB SPL, L2 = 55 dB SPL
- Stimulus frequencies:
 - ▶ f2/f1 = 1.22
 - ▶ f2 often set equal to audiometric frequency. Why?

Many studies suggest these conditions, particularly L1, L2 = 65, 55 dB SPL, are most accurate for identifying hearing loss (e.g., Stover et al., 1996; Johnson et al., 2007; 2010).

10

Clinical Interpretation of OAEs

► Goal: Identify Ears with Hearing Loss

How does response from normal ears differ from impaired ears?

Next figure shows DPOAE levels for normal and impaired ears

- \blacktriangleright DPOAE level as a function of f_2
- Data from normal (left panel) and impaired (right panel) ears are shown
- Parameter is percentage, from 5th to 95th percentiles
- Filled symbols represent the DPOAE levels at the median (50th) percentile

DPOAEs in Normal & Impaired Ears

Gorga et al. (1996)

Overlap Between Normal and Impaired Responses

- No criterion can be selected that completely separates responses from the normal and impaired ears.
 - Some impaired ears produce bigger responses than some normal ears
 - And, some normal ears produce smaller responses than some impaired ears

Development of Template

- Study: Gorga et al. (1997, E&H)
- Data from <u>1257</u> normal and impaired ears
- ► $L_1/L_2 = 65/55$ dB SPL
- All data collected under clinical conditions
- Constructed cumulative distributions

Cumulative distributions & Template Construction

BTNRH Template

Using the template

Must judge influence of noise

- 1. If $SNR \ge 6 dB$, plot DPOAE level on template, interpret accordingly
- 2. If $SNR \leq 6$, how noisy was the response?
 - If noise falls <u>below</u> the lower lines on the template (impaired region), plot and interpret accordingly

18

If noise falls <u>above</u> the lower lines on the template (impaired region) responses contaminated by noise and can't be interpreted

Uncertain region

▶ Diagnosis is <u>uncertain</u> for responses in the shaded region, even if $SNR \ge 6 dB$, because responses here could be from either normal or impaired ears.

f2	DPOAE level	Noise level	
frequency	(dB SPL)	(dB SPL)	SNR (dB)
1000	8	-10	18
2000	3	-13	16
4000	2	-10	12

Example Case #1

Case 1: Results Consistent with Normal Hearing

- \blacktriangleright Low noise levels even for lower f_2 's
- Large DPOAEs
- Positive SNRs at all f₂'s
- Levels above 95th percentile for impaired ears
- Results consistent with normal hearing because few impaired ears produce such large responses

f2	DPOAE level	Noise level	
frequency	(dB SPL)	(dB SPL)	SNR (dB)
1000	8	8	0
2000	0	-1	1
4000	0	0	0

Example Case #2

Case #2: High Noise Levels = Uninterpretable Responses

- "Large" DPOAEs
- High noise levels
- Low SNRs
- Results are uninterpretable because "large" DPOAEs may be nothing more than noise
- Note that the DPOAE levels were similar to Case #1

f2 frequency	DPOAE level (dB SPL)	Noise level (dB SPL)	SNR (dB)
1000	-14	-15	1
2000	-18	-17	-1
4000	-18	-20	2

Case #3: Low SNRs & Low Noise Levels can be Interpreted

- DPOAEs below the lower limits of graph
- Noise levels also are low
- Low SNRs (i.e., DPOAE level was not measured reliably)
- Results are consistent with hearing loss because the reason a response was not measured was NOT due to high levels of noise, but to low level of response.

f2 frequency	DPOAE level (dB SPL)	Noise level (dB SPL)	SNR (dB)
1000	0	-11	11
2000	-6	-14	8
4000	-6	-20	14

Example Case #4

Case #4: DPOAEs in the region of uncertainty

- DPOAE levels in shaded region
- Noise levels well below DPOAEs
- Positive SNRs, meaning DPOAEs were measured reliably
- Results cannot be assigned to normal or impaired distribution

f2 frequency	DPOAE level (dB SPL)	Noise level (dB SPL)	SNR (dB)
1000	0	-2	2
2000	-5	-5	0
4000	-6	-5	-1

Example Case #5

Case #5: Uninterpretable DPOAEs in Region of Uncertainty

- DPOAEs in shaded region
- Noise levels = DPOAE level
- SNRs approximately = 0
- DPOAEs therefore are not reliable
- Results cannot be interpreted because measured "responses" may be just noise, but this cannot be known

f2 frequency	DPOAE level (dB SPL)	Noise level (dB SPL)	SNR (dB)
1000	-14	-21	7
2000	-16	-23	7
4000	-16	-23	7

Example Case #6

Case #6: SNRs > 6 dB, Responses in Impaired Region

- Although SNRs all > 6 dB, the DPOAE Levels indicate impaired OHC function, consistent with hearing loss
- Important to evaluate both response level and noise independently, not just the SNR

Bad News - Good News

- Errors in diagnoses are inevitable when OAEs are used to identify hearing loss.
- ▶ This is true for other tests, not just OAE tests.

Good news:

- When auditory status is uncertain, it is more likely that we are confusing normal and mild hearing loss.
- It is much less likely that we are confusing normal hearing with moderate or greater losses.

Multivariate Approaches

Typical Goal of OAE Testing

Identify auditory status

Does this ear have normal hearing or impaired hearing?

39

Predicting Auditory Status: Univariate Approach

Responses interpreted by looking at information from one frequency 40

- ► For example:
 - Is the SNR at 2kHz > 6 dB and was the DPOAE level at 2kHz consistent with normal or impaired hearing?

Predicting Auditory Status: Univariate Approach

Performance is not perfect, responses from normal and impaired ears can look the same 41

Uncertain region on clinical forms comes from this overlap

42

Predicting Auditory Status: Multivariate Approach

Measurements (DP level, noise) made at several frequencies can be used to predict auditory status at a single frequency

Why do this?

- Normal at one frequency, likely normal at other frequencies.
- Impaired at one frequency, likely impaired at other frequencies.

43

Predicting Auditory Status: Multivariate Approach

- Need to know which frequencies help most in prediction
- ► How?
 - ► Use logistic regression

Logistic Regression

- Specifies which variables and associated coefficients most accurately separate a normal from an impaired ear
 - > Variables = DPOAE levels and noise values at different f_2 frequencies

44

- Coefficients = multipliers for the variables
- Generates an equation that transforms DPOAE and noise levels in to LF score.
 - LF score can be used to predict auditory status.

Simplified (!) example of LR equation

- $\mathsf{LF}_{4000} = (0.068^*\mathsf{DP}_{2000} + 0.038^*\mathsf{DP}_{3000} + 0.172^*\mathsf{DP}_{4000}) + (-0.087^*\mathsf{N}_{3000} + -0.082^*\mathsf{N}_{4000} + -0.051^*\mathsf{N}_{6000})$
- LF score is not a physical variable like DP level or noise but can be used to make decisions about auditory status
- Use LF templates to make decisions.

46

LF Template

LF score (on ordinate) is a dimensionless number derived from logistic regression.

Gorga et al., 2005

Multivariate Approach

Gorga et al. (1999, 2005)

- First to use a multivariate analysis with DPOAEs
- New approach improved test accuracy
 - Dependent on degree of hearing loss and frequency
 - Never produced more uncertainty
 - Improvements seen in two different studies with different subjects

Julie Bangert AuD Project

- Does the Gorga et al. multivariate approach translate to a different clinic, different equipment, and pediatric only data set?
- Tested this question using data from our clinic at KUMC.

Methods: Subjects & Inclusion Criteria

- Subjects selected from KUMC Audiology Clinic pediatric data
 - 24 subjects (n=47 ears)
 - Ages: 6 months to 16.5 years
- Inclusion criteria:
 - DPOAEs
 - Behavioral audiometric data (VRA, CPA, conventional)
 - Normal tympanometry

Methods: Behavioral & DPOAE Data

Data extracted from our pediatric clinic records:

- Behavioral air conduction thresholds from 1- 4 kHz (interpolated at 1.5 & 3 kHz)
 - Each threshold was classified as normal (≤ 20 dB HL) or impaired (>20 dB HL)
- DPOAE and noise levels from 1-6 kHz
 - DPOAEs classified as normal, uncertain, or impaired using BTNRH template

Methods: LF Scores

- DPOAE and noise levels were converted to LF scores using the Gorga et al (2005) equations.
- Example of the LF score computation at 4kHz:
- LF score was classified as normal, uncertain, or impaired by comparing to template

Methods: Determining Accuracy

Methods: Determining Accuracy

What was considered an "error"?

If DPOAE decision differed from behavioral threshold decision

N vs. I, I vs. N, uncertain vs. N or I

- If LF decision differed from behavioral threshold decision
 - N vs. I, I vs. N, uncertain vs. N or I
- If DPOAE was uninterpretable due to high noise levels/poor SNR

Results: Decision Univariate DPOAEs vs. LF Score

Results: LF Only Errors

Rare for the LF score to make an error when univariate DPOAE had been correct

Discussion

- Increase in the number of correct decisions when using LF score vs. the univariate DPOAE
- Few cases where the LF score caused an error and the traditional approach did not
- Large contribution to improved decisions with LF scores was from cases where the univariate DPOAE was uninterpretable due to high noise levels and the LF score made a correct decision

Discussion

- Original formulas developed with the Biologic system generalized to the ILO system
- Multivariate approach does not require any more participation from the patient! It's all data analysis after the fact.

Limitations

Limited data for logit function equation

- To compute all frequencies, you need DP emission and noise values for 750, 1000, 1500, 2000, 3000, 4000, 6000, and 8000 Hz
- Do not typically collect DP₈₀₀₀ or N₇₅₀
 - ► Extrapolation of DP₈₀₀₀ from DP₆₀₀₀
 - ▶ Did not use equations requiring N₇₅₀
- Small sample size (n=47 ears); but consistent with other larger studies

Overall Conclusions

- BTNRH templates provide an evidence-based approach to interpreting DPOAE data based on a very large data set
- It is important to look at both DPOAE level and noise levels when interpreting DPOAEs
- Multiple studies (BTNRH and KUMC) suggest that the multivariate approach improves DPOAE test accuracy.

References

- Gorga, M.P., Stover, L., Neely, S.T., & Montoya, D. (1996). The use of cumulative distributions to determine critical values and levels of confidence for clinical distortion product otoacoustic emission measurements. J Acoust Soc Am, 100, 968-977.
- Gorga, M.P., Neely, S.T., Ohlrich, B., Hoover, B., Redner, J., & Peters, J. (1997). From laboratory to clinic: A large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. *Ear Hear*, 18, 440-455.
- Gorga, M. P., Neely, S. T., & Dorn, P. A. (1999). Distortion Product Otoacoustic Emission Test Performance for a priori Criteria and for Multifrequency Audiometric Standards. *Ear and Hearing*, 20(4), 345.

References

- Gorga, M. P., Dierking, D. M., Johnson, T. A., Beauchaine, K. L., Garner, C. A., & Neely, S. T. (2005). A Validation and Potential Clinical Application of Multivariate Analyses of Distortion-Product Otoacoustic Emission Data. Ear and Hearing, 26(6), 593-607.
- Johnson, T.A., Neely, S.T., Kopun, J.G., Dierking, D.M., Tan, H., Converse, C., Kennedy, E., & Gorga, M.P. (2007). Distortion product otoacoustic emissions: Cochlear-source contributions and clinical test performance. J Acoust Soc Am, 122, 3539-3553.
- Johnson, T.A., Neely, S.T., Kopun, J.G., Dierking, D.M., Tan, H., & Gorga, M.P. (2010). Clinical test performance of distortion product otoacoustic emissions using new stimulus conditions. *Ear Hear*, 31, 74-83.
- Stover, L., Gorga, M.P., Neely, S.T., & 919 Montoya, D. (1996a). Toward optimizing the clinical utility of distortion product otoacoustic emission measurements. J Acoust Soc Am, 100, 921 956-967.